低重复频率全正色散脉冲光纤激光器的三种 锁模状态

刘诗尧陈胜平宋锐刘通侯静

(国防科学技术大学光电科学与工程学院,湖南长沙 410073)

摘要 研究了一种基于半导体可饱和吸收镜(SESAM)锁模的线性腔掺镱光纤激光器,其工作在全正色散区域。 实验中通过调节偏振控制器和抽运功率,观察到三种不同的锁模状态。除了相同的重复频率(基频 435.6 kHz),三 种锁模状态的光谱、脉冲形状以及随抽运功率变化的演化过程均具有较大差异,其中状态一具有对称加宽的类高 斯形光谱;状态二具有非对称加宽的平顶光谱;状态三的脉冲宽度随抽运功率增加急剧增大,脉冲特性类似于耗散 孤子,但光谱与之不同。

关键词 光纤光学;全正色散光纤激光器;半导体可饱和吸收镜;掺镱光纤激光器;偏振 中图分类号 TN248.1 **文献标识码** A **doi**: 10.3788/CJL201239.s102007

Three Mode-Locking States in All-Normal-Dispersion Fiber Laser at Low Repetition

Liu Shiyao Chen Shengping Song Rui Liu Tong Hou Jing

(College of Opto-Electric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China)

Abstract An all-normal-dispersion ytterbium-doped linear-cavity fiber laser mode-locked by a semiconductor saturable absorber mirror (SESAM) is reported. Without anomalous dispersion part, output pulses are highly-chirped and fundamental repetition rate is 435.6 kHz. Three mode-locking states are observed by adjusting polarization controller and pump power. Characters of these states, such as spectrum, pulse shape and stability, are analyzed in control experiments.

Key words fiber optics; all normal dispersion fiber laser; semiconductor saturable absorber mirror; ytterbiumdoped fiber laser; polarization

OCIS codes 060.2310; 060.3510; 140.4050

1 引 言

近年来,被动锁模光纤激光器作为工作稳定、体积小巧和成本低的超快光源得到了广泛和深入的研究。为了能够改善激光器的各项性能,如单脉冲能量、脉冲峰值功率、重复频率和工作波长等,人们提出了一些新的被动锁模光纤激光器的结构和方案。

在增益介质的选择方面,掺镱光纤(YDF)由于具有 量子缺陷小、掺杂浓度高、光-光转换效率高、吸收和 发射谱宽等特点有利于高效率、高能量的短脉冲激 光产生,而受到广泛关注。在被动锁模技术上,半导 体可饱和吸收镜(SESAM)锁模^[1],非线性偏振旋转 锁模^[2],碳纳米管锁模^[3]和球墨烯锁模^[4]等技术相

基金项目:国家自然基金(61077076,10904173)和教育部新世纪优秀人才计划(NCE-08-0142)资助课题。

作者简介:刘诗尧(1986一),男,硕士研究生,主要从事锁模光纤激光器与色散补偿等方面的研究。

E-mail: oscar_liu99@163.com

导师简介: 侯 静(1975—),女,博士,研究员,主要从事光纤激光相干合成技术、光纤激光及光子晶体光纤等方面的研究。E-mail: houjing25@sina.com(通信联系人)

收稿日期: 2011-07-30; 收到修改稿日期: 2011-08-29

继问世。其中 SESAM 和非线性偏振旋转锁模技术 由于其优异的性能发展最为迅速。在控制重复频率 方面,由于激光放大器在高速激光处理应用中往往 工作在几百千赫兹甚至更低;为了避免脉冲采样和 声光调制等手段带来的负面效应(如高电压和,晶体 的压电效应等)^[5],一些小组采用加长腔内光纤长度 的方案降低重复频率,并获得了较大的单脉冲能 量^[5~8]。在脉冲形成和演化方面,最早出现的孤子 锁模^[9]由于受到孤子面积理论和周期性扰动的限 制,单脉冲能量受到限制(小于 100 pJ)。为了提高 单脉冲能量和峰值功率,人们相继提出了呼吸孤子锁 模^[10,11]和自相似锁模^[12]的光纤激光器,并取得了重 要进展。然而这几种锁模方式都需要在激光腔中引 入色散补偿机制来压缩脉冲,不利于激光器的简化。

在 2006 年, A. Chong 等^[13]提出一种基于滤波 器对啁啾脉冲进行脉冲整形和压缩的飞秒激光器。 由于腔内没有元件工作在反常色散区,所以被称为 全正常色散(ANDI)光纤激光器,也称为全正色散 激光器。这类激光器的腔内净色散量通常很大,形 成的强烈啁啾脉冲不易分裂,因而可以获得高能量 脉冲。ANDI光纤激光器中形成的耗散孤子,不同 于传统意义上由色散和非线性效应相互作用形成的 孤子,是在能量流入和流出的动态平衡过程中产 生^[14]。耗散孤子脉冲具有特殊的光谱和脉冲特 性^[15~17]。此前的研究大多集中在非线性偏转锁 模^[13,18]和 SESAM 锁模^[17]的环形腔 ANDI 光纤激 光器上,本文研究了基于 SESAM 被动锁模的低重 复频率线性腔掺镱光纤激光器。在无外加滤波器的 条件下,通过调节偏振控制器和 SESAM,观测到三 种不同的锁模状态。

2 实验装置

图1给出了全正色散脉冲光纤激光器的示意 图。线性腔单程全长 229.5 m。腔内无负色散元 件,因此该激光器工作在全正色散域。利用波分复 用器(WDM)将 980 nm 单模半导体激光器的抽运 光引入腔内;增益介质为33 cm长高掺杂的掺镱光纤 (YDF, 976 nm 处吸收率为 1200 dB/m, Liekki 公司 生产);在掺杂光纤后熔接约 220 m 长普通单模光纤 (SMF),其零色散点在 1310 nm 处,在 1040 nm 附近 处于正色散域。在腔一端使用一个中心波长为 1064 nm的半反半透镜作为腔镜和输出端,用以监控 输出功率;将另一端的输出光耦合进 SESAM (BATOP 公司生产)。SESAM 的吸收中心波长、调制 深度、饱和通量和弛豫时间分别为 1064 nm、30%, 30 J/cm²和6 ps。使用一分三耦合器中两个 1% 输 出端来同时监测光谱和脉冲特性。在 SMF 和 YDF 之间加入偏振控制器(PC),用以控制腔内偏振和锁 模状态的转化。

图 1 全正色散光纤激光器结构示意图 Fig. 1 Schematic of the all-normal-dispersion fiber laser

3 实验结果与讨论

谐振腔内没有进行色散补偿和使用滤波器,激 光器可以自启动并产生稳定的脉冲序列。通过调节 偏振控制器和抽运功率,观察到三种不同的锁模状 态。这些调节方式改变了腔内损耗、增益分布和双 折射特性。本文中将这三种锁模状态分别称为状态 一、状态二和状态三,它们都工作在基频下,为 435.6 kHz(图 2)。

利用 SESAM 锁模后,对状态一进行观测。从

图 3(a)和(b)可以发现,状态一的光谱是对称加宽的类高斯形光谱;抽运功率为 105 mW 时,其中心波 长为 1042 nm,3 dB 光谱宽度约 2.05 nm。假设脉 冲为双曲正割形,对应的变换极限脉冲宽度为 575 fs。脉冲的宽度超过了实验室自相关仪的测量 范围,所以采用示波器和高速探头(上升时间小于 150 ps)测得脉冲宽度为 1.005 ns,远远大于变换极 限宽度;表明在没有色散补偿的全正色散激光器中, 脉冲是强烈啁啾的。

图 2 重复频率为 435.6 kHz 的稳定脉冲序列 Fig. 2 Stable pulse train at the repetition of 435.6 kHz 调节偏振控制器,可以在相同抽运功率下观测到 状态二。如图 3(c)和(d)所示,状态二的脉冲形状与 状态一没有明显变化,但是光谱形状上存在显著差异。状态二的光谱中心波长为1038.2 nm,存在约5 nm的平坦顶部(波动小于1 dB),短波边沿较长波边沿更为陡峭。其3 dB光谱宽度为7.52 nm,是状态一的3.6 倍,变换极限脉冲宽度约为150 fs。这也意味着更多的起振纵模数和能量利用效率。

调节偏振控制器可以改变腔内的增益分布和双 折射,体现在起振的中心波长和谱宽在一定范围内 可以进行连续调节。通常在实验中,对称加宽、光滑 的类高斯形光谱被认为是锁模良好的重要标志之 一,但是在本实验中并非如此。本文对状态一和状 态二进行了一系列对比实验。

图 3 两种锁模态的脉冲形状与光谱形状(抽运功率为 105 mW)。(a)状态一脉冲形状; (b)状态一光谱形状;(c)状态二脉冲形状;(d)状态二光谱形状

Fig. 3 Single pulse shapes and corresponding spectram of two mode-locking states at 105 mW. (a) Pulse

shape of state 1; (b) spectrum of state 1; (c) pulse shape of state 2; (d) spectrum of state 2

如图 4 所示,状态一锁模阈值为 105 mW,其输 出功率随抽运功率近似线性增长。但是,3 dB 光谱 宽度和示波器中显示的脉冲峰值功率除了初期(小 于 115 mA)随抽运功率单调增长外,处于波动之 中。从图 5 的脉冲形状变化趋势可以发现脉冲在高 抽运功率下易发生分裂,这与全正色散强啁啾脉冲 分裂阈值高的特性不相符,因此推断状态一处于不 稳定的锁模状态,且不能使其余纵模起振,光谱加宽 受到了限制。

对状态二其进行相同的测量,结果如图6所示。

可以看出,输出功率、3 dB 光谱宽度和脉冲峰值强 度都随抽运功率的增加近似线性的变化。在 图 6(b)观察到光谱谱宽的跳变并不代表脉冲的畸 变,而是光谱在 1034 nm 处出现了一个背景尖峰 [图 7(d)];尖峰吸收了大量新增加的抽运光,从光 谱中发现它持续增长。继续提高抽运功率,仍然可 以观测到脉冲序列,但是峰值功率和光谱宽度增长 变缓。调节偏振控制器,不能完全抑制尖峰的产生。 状态二的脉冲宽度对抽运功率变化不敏感。状态二 比状态一锁模阈值低 20%;在相同的抽运功率下脉

图 4 状态一变化特性。(a)输出功率;(b) 3 dB光谱宽度;(c)峰值强度(示波器)

Fig. 4 Characters of the first state. (a) Output power; (b) 3 dB spectrum width; (c) peak intensity

冲峰值功率高25%以上;光谱宽度随调节程度加宽 1.5~3.0倍,这意味着更多的锁定纵模数和更高的

1.0

80

90 100 110 120

Pump power /mW

130

抽运光利用率;脉冲序列也更为稳定,不易发生 分裂。

图 6 状态二变化特性。(a)输出功率;(b) 3 dB光谱宽度;(c)峰值强度(示波器) Fig. 6 Characters of the second state. (a) Output power;(b) 3 dB spectrum width;(c) peak intensity

90 100 110 120

Pump power /mW

130

12

80 90

100 110 120

Pump power /mW

130

0

80

状态三是通过对偏振控制器和 SESAM 共同调 节时观测到的。不同于状态一和状态二,状态三的 脉冲宽度强烈依赖于抽运功率并且比前二者宽2倍 以上,并具有宽平顶脉冲形状[图 8(a)]。当抽运功 率从 105 mW 上升至 192 mW,状态三的脉冲宽度 从 1.836 ns 增加至 3.328 ns,在这个过程中脉冲没 有分裂的趋势;当抽运功率超过 192 mW 后脉冲发 生跳变[图 8(c)],演化成类似于状态二的脉冲形 状。抽运功率为105 mW时,状态三光谱中心波长位 于1040.6 nm 处,3 dB光谱宽度为4.24 nm[图8(b)]。 状态三脉冲宽度随抽运强烈变化和宽平顶脉冲形状的 特性,类似于在全正色散非线性偏转锁模激光器中发 现的耗散孤子^[15~17];但是,状态三光谱并没有陡峭前后 沿这一重要耗散孤子特征,这可能与长腔内偏振态、增 益特性及无滤波器件有关。

为了获得更短的脉冲,在腔外增加光栅对作为 色散补偿装置。选用了 1200 lins/nm 的反射式镀 金刻线光栅,光栅对的间距为 17.5 cm。经过光栅 对后,状态二和状态三的平均脉冲宽度分别下降了 约 70 ps 和 90 ps。受到光栅面积和光栅常数的影 响,脉冲宽度远远超过了腔外压缩的适用范围,所以 滤波^[13]或腔内压缩会有更明显的效果。

4 结 论

实验对基于 SESAM 锁模的低重复频率全正色 散线性腔掺镱光纤激光器进行了研究。激光器被动 锁模可以实现自启动,基频为 435.6 kHz。通过调 整偏振控制器和抽运功率,观测到三种不同的锁模 态。三种锁模态的光谱、脉冲特性具有较大差异。 其中具有非对称宽平顶光谱的状态二更加稳定,单 脉冲能量更高。由于全正色散和长腔条件,输出脉 冲是强烈啁啾的,利用光栅对等色散补偿器件可以 对其进行时域压缩。

参考文献

- 1 Ursula Keller. Recent developments in compact ultrafast lasers [J]. *Nature*, 2003, **424**(6950): 831~838
- 2 L. J. Kong, X. S. Xiao, C. X. Yang. Low-repetition-rate allfiber all-normal-dispersion Yb-doped mode-locked fiber laser[J]. *Laser Phys. Lett.*, 2010, 7(5): 359~361
- 3 J. C. Travers, E. D. Obraztsova, A. S. Lobach *et al.*. Modelocking fiber lasers with the E₂₂ transition of carbon nanotubes [C]. CLEO/Europe, 2009, CJ10:1
- 4 Z. Sun, T. Hasan, D. popa *et al.*. Ultrafast fiber laser modelocked by graphene based saturable absorber [C]. Spectrum, 2010. 1989~1990
- 5 Meng Zhang, Lingling Chen, Chun Zhou *et al.*. Ultra-low repetition rate all-normal-dispersion linear-cavity mode-locked fiber lasers [C]. CLEO,2009
- 6 Rui Song, Hongwei Chen, Shengping Chen *et al.*. SESAM passively mode-locked fiber laser with a long cavity including a band pass filter[J]. J. Opt., 2011, 13(3): 035201
- 7 M. Zhang, L. L. Chen, C. Zhou et al.. Mode-locked ytterbium-

doped linear-cavity fiber laser operated at low repetition rate [J]. Laser Phys. Lett., 2009, 6(9): 657~660

- 8 Zhao Hui, Chai Lu, Oyang Chunmei *et al.*. A long-covity allnormal-dispersion mode-locked Yb-doped fiber laser [J]. *Chinese* J. Lasers, 2010, **37**(12): 2958~2962
- 赵 慧,柴 路,欧阳春梅等.长腔全正色散锁模掺镱光纤激光器[J].中国激光,2010,**37**(12):2958~2962
- 9 K. Tamura, L. E. Nelson, H. A. Haus *et al.*. Soliton versus nonsoliton operation of fiber ring lasers [J]. *App. Phys. Lett.*, 1994, 64(2): 149~151
- 10 K. Tamura, E. P. Ippen, H. A. Haus. Pulse dynamics in stretched-pulse fiber lasr[J]. Appl. Phys. Lett., 1995, 67(2): 158~160
- 11 L. Lefort, J. H. V. Price, D. J. Richards *et al.*. Practical lownoise stretched-pulse Yb³⁺-doped fiber laser [J]. *Opt. Lett.*, 2002, **27**(5): 291~293
- 12 F. O. Ilday, J. R. Buckley, W. G. Clark *et al.*. Self-similar evolution of parabolic pulses in a laser[J]. *Phys. Rev. Lett.*, 2004, **92**(21): 213902
- 13 A. Chong, J. Buckley, W. Renniger et al.. All-normal-

dispersion femtosecond fiber laser [J]. Opt. Express, 2006, 14(21): 10095~10100

- 14 N. N. Rozanov. Dissipative optical solitons [J]. J. Opt. Technol., 2009, 76(4): 187~198
- 15 A. Chong, W. Renniger, H. William *et al.*. Properties of normal-dispersion femtosecond fiber lasers [J]. J. Opt. Soc. Am. B, 2008, 25(2): 140~148
- 16 W. H. Renninger, A. Chong, F. W. Wise. Dissipative solitons in normal-dispersion fiber lasers [J]. Phys. Rev. A, 2008, 77(2): 023814
- 17 H. Zhang, D. Y. Tang, L. M. Zhao *et al.*. Dissipative vector solitons in a dispersion managed cavity fiber laser with net positive cavity dispersion [J]. *Opt. Express*, 2009, **17** (2): 455~460
- 18 Zhang Zuxing, Dai Guoxing. All-noraml-dispersion dissipative solition ytterbium-doped fiber laser without addition filter [J]. Acta Optica Sinica, 2011, 31(2): 0214005

张祖兴,戴国兴.全正色散耗散孤子掺镱光纤激光器[J]. 光学 学报,2011,**31**(2):0214005

栏目编辑: 宋梅梅